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1 Introduction to communication systems

1.1. Shannon’s insight [8]:

The fundamental problem of communication is that of reproducing
at one point either exactly or approximately a message selected at
another point.

Definition 1.2. Figure 1 [8] shows a commonly used model for a (single-
link or point-to-point) communication system. All information transmission
systems involve three major subsystems–a transmitter, the channel, and a
receiver.

(a) Information source: produce a message

• Messages may be categorized as analog (continuous) or digital
(discrete).

(b) Transmitter: operate on the message to create a signal which can be
sent through a channel

(c) Channel: the medium over which the signal, carrying the information
that composes the message, is sent

• All channels have one thing in common: the signal undergoes
degradation from transmitter to receiver.

◦ Although this degradation may occur at any point of the com-
munication system block diagram, it is customarily associated
with the channel alone.
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◦ This degradation often results from noise and other undesired
signals or interference but also may include other distortion
effects as well, such as fading signal levels, multiple transmission
paths, and filtering.

(d) Receiver: transform the signal back into the message intended for
delivery

(e) Destination: a person or a machine, for whom or which the message
is intended

Basic elements of communication 
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Figure 1: Schematic diagram of a general communication system
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2 Frequency-Domain Analysis

Electrical engineers live in the two worlds, so to speak, of time and frequency.
Frequency-domain analysis is an extremely valuable tool to the communi-
cations engineer, more so perhaps than to other systems analysts. Since the
communications engineer is concerned primarily with signal bandwidths and
signal locations in the frequency domain, rather than with transient analysis,
the essentially steady-state approach of the (complex exponential) Fourier
series and transforms is used rather than the Laplace transform.

2.1 Math background

2.1. Euler’s formula : ejx = cosx+ j sinx.

cos (A) = Re
{
ejA
}

=
1

2

(
ejA + e−jA

)
sin (A) = Im

{
ejA
}

=
1

2j

(
ejA − e−jA

)
.

2.2. We can use cosx = 1
2

(
ejx + e−jx

)
and sinx = 1

2j

(
ejx − e−jx

)
to derive

many trigonometric identities.

Example 2.3. cos2(x) = 1
2 (cos(2x) + 1)

2.4. Similar technique gives
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(a) cos(−x) = cos(x),

(b) cos
(
x− π

2

)
= sin(x),

(c) sin(x) cos(x) = 1
2 sin(2x), and

(d) the product-to-sum formula

cos(x) cos(y) =
1

2
(cos(x+ y) + cos(x− y)) . (1)

2.2 Continuous-Time Fourier Transform

Definition 2.5. The (direct) Fourier transform of a signal g(t) is defined
by

G(f) =

+∞∫
−∞

g(t)e−j2πftdt (2)

This provides the frequency-domain description of g(t). Conversion back to
the time domain is achieved via the inverse (Fourier) transform:

g (t) =

∞∫
−∞

G (f) ej2πftdf (3)

• We may combine (2) and (3) into one compact formula:

∞∫
−∞

G (f) ej2πftdf = g (t)
F−−⇀↽−−
F−1

G (f) =

∞∫
−∞

g (t) e−j2πftdt. (4)

• We may simply write G = F {g} and g = F−1 {G}.

• Note that G(0) =
∫
g(t)dt and g(0) =

∫
G(f)df .

2.6. In some references1, the (direct) Fourier transform of a signal g(t) is
defined by

G2(ω) =

∫ +∞

−∞
g(t)e−jωtdt (5)

1MATLAB uses this definition.
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In which case, we have

1

2π

∞∫
−∞

G2 (ω) ejωtdω = g (t)
F−−⇀↽−−
F−1

G2 (ω) =

∞∫
−∞

g (t) e−jωtdt (6)

• In MATLAB, these calculations are carried out via the commands fourier
and ifourier.

• Note that Ĝ(0) =
∫
g(t)dt and g(0) = 1

2π

∫
G(ω)dω.

• The relationship between G(f) in (2) and G2(ω) in (5) is given by

G(f) = G2(ω)|ω=2πf (7)

G2(ω) = G(f)|f= ω
2π

(8)

2.7. Q: The relationship between G(f) in (2) and G2(ω) in (5) is given by
(7) and (8) which do not involve a factor of 2π in the front. Why then does
the factor of 1

2π shows up in (6)?

Example 2.8. Rectangular and Sinc:

1 [|t| ≤ a]
F−−⇀↽−−
F−1

sin(2πfa)

πf
=

2 sin (aω)

ω
= 2a sinc (aω) (9)
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Figure 2: Fourier transform of sinc and rectangular functions

• By setting a = T0/2, we have

1

[
|t| ≤ T0

2

]
F−−⇀↽−−
F−1

T0 sinc(πT0f). (10)

• In [4, p 78], the function 1 [|t| ≤ 0.5] is defined as the unit gate function
rect (x).

Definition 2.9. The function sinc(x) ≡ (sinx)/x is plotted in Figure 3.
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Figure 3: Sinc function

• This function plays an important role in signal processing. It is also
known as the filtering or interpolating function.
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• Using L’Hôpital’s rule, we find lim
x→0

sinc(x) = 1.

• sinc(x) is the product of an oscillating signal sin(x) (of period 2π) and
a monotonically decreasing function 1/x . Therefore, sinc(x) exhibits
sinusoidal oscillations of period 2π, with amplitude decreasing contin-
uously as 1/x.

• In MATLAB and in [11, eq. 2.64], sinc(x) is defined as (sin(πx))/πx. In
which case, it is an even damped oscillatory function with zero crossings
at integer values of its argument.

Definition 2.10. The (Dirac) delta function or (unit) impulse function
is denoted by δ(t). It is usually depicted as a vertical arrow at the origin.
Note that δ(t) is not a true function; it is undefined at t = 0. We define
δ(t) as a generalized function which satisfies the sampling property (or
sifting property) ∫ ∞

−∞
φ(t)δ(t)dt = φ(0) (11)

for any function φ(t) which is continuous at t = 0. From this definition, It
follows that

(δ ∗ φ)(t) = (φ ∗ δ)(t) =

∫ ∞
−∞

φ(τ)δ(t− τ)dτ = φ(t) (12)

where we assume that φ is continuous at t.

• Intuitively we may visualize δ(t) as an infinitely tall, infinitely narrow
rectangular pulse of unit area: lim

ε→0

1
ε1
[
|t| ≤ ε

2

]
.

2.11. Properties of δ(t):

• δ(t) = 0 when t 6= 0.
δ(t− T ) = 0 for t 6= T .

•
∫
A δ(t)dt = 1A(0).

(a)
∫
δ(t)dt = 1.

(b)
∫
{0} δ(t)dt = 1.

(c)
∫ x
−∞ δ(t)dt = 1[0,∞)(x). Hence, we may think of δ(t) as the “deriva-

tive” of the unit step function U(t) = 1[0,∞)(x).
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•
∫
φ(t)δ(t)dt = φ(0) for φ continuous at 0.

•
∫
φ(t)δ(t− T )dt = φ(T ) for φ continuous at T . In fact, for any ε > 0,∫ T+ε

T−ε
φ(t)δ(t− T )dt = φ(T ).

• δ(at) = 1
|a|δ(t). In particular,

δ(ω) =
1

2π
δ(f) (13)

and

δ(ω − ω0) = δ(2πf − 2πf0) =
1

2π
δ(f − f0), (14)

where ω = 2πf and ω0 = 2πf0.

Example 2.12. δ(t)
F−−⇀↽−−
F−1

1.

Example 2.13. ej2πf0t
F−−⇀↽−−
F−1

δ (f − f0).

Example 2.14. ejω0t
F−−⇀↽−−
F−1

2πδ (ω − ω0).

Example 2.15. cos(2πf0t)
F−−⇀↽−−
F−1

1
2 (δ (f − f0) + δ (f + f0)).
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2.16. Conjugate symmetry2: If x(t) is real-valued, then X(−f) =
(X(f))∗

Observe that if we know X(f) for all f positive, we also know X(f) for
all f negative. Interpretation: Only half of the spectrum contains all of
the information. Positive-frequency part of the spectrum contains all the
necessary information. The negative-frequency half of the spectrum can be
determined by simply complex conjugating the positive-frequency half of
the spectrum.

2.17. Shifting properties

• Time-shift :

g (t− t1)
F−−⇀↽−−
F−1

e−j2πft1G (f)

◦ Note that |e−j2πft1| = 1. So, the spectrum of g (t− t1) looks exactly
the same as the spectrum of g(t) (unless you also look at their
phases).

• Frequency-shift (or modulation):

ej2πf1tg (t)
F−−⇀↽−−
F−1

G (f − f1)

2Hermitian symmetry in [7, p 17 ].
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2.18. Let g(t), g1(t), and g2(t) denote signals with G(f), G1(f), and G2(f)
denoting their respective Fourier transforms.

(a) Superposition theorem (linearity):

a1g1(t) + a2g2(t)
F−−⇀↽−−
F−1

a1G1(f) + a2G2(f).

(b) Scale-change theorem (scaling property [4, p 88]):

g(at)
F−−⇀↽−−
F−1

1

|a|
G

(
f

a

)
.

• The function g(at) represents the function g(t) compressed in time
by a factor a (when |a| > l). Similarly, the function G(f/a) repre-
sents the function G(f) expanded in frequency by the same factor
a.

• The scaling property says that if we “squeeze” a function in t,
its Fourier transform “stretches out” in f . It is not possible to
arbitrarily concentrate both a function and its Fourier transform.

• Generally speaking, the more concentrated g(t) is, the more spread
out its Fourier transform G(f) must be.

• This trade-off can be formalized in the form of an uncertainty prin-
ciple. See also 2.28 and 2.29.

• Intuitively, we understand that compression in time by a factor
a means that the signal is varying more rapidly by the same fac-
tor. To synthesize such a signal, the frequencies of its sinusoidal
components must be increased by the factor a, implying that its
frequency spectrum is expanded by the factor a. Similarly, a signal
expanded in time varies more slowly; hence, the frequencies of its
components are lowered, implying that its frequency spectrum is
compressed.

(c) Duality theorem (Symmetry Property [4, p 86]):

G(t)
F−−⇀↽−−
F−1

g(−f).
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• In words, for any result or relationship between g(t) and G(f),
there exists a dual result or relationship, obtained by interchanging
the roles of g(t) and G(f) in the original result (along with some
minor modifications arising because of a sign change).

In particular, if the Fourier transform of g(t) is G(f), then the
Fourier transform of G(f) with f replaced by t is the original time-
domain signal with t replaced by −f .

• If we use the ω-definition (5), we get a similar relationship with an
extra factor of 2π:

G2(t)
F−−⇀↽−−
F−1

2πg(−ω).

Example 2.19. x(t) = cos(2πaf0t)
F−−⇀↽−−
F−1

1
2 (δ(f − af0) + δ(f + af0)) .

Example 2.20. From Example 2.8, we know that

1 [|t| ≤ a]
F−−⇀↽−−
F−1

2a sinc (2πaf) (15)

By the duality theorem, we have

2a sinc(2πat)
F−−⇀↽−−
F−1

1[| − f | ≤ a],

which is the same as

sinc(2πf0t)
F−−⇀↽−−
F−1

1

2f0
1[|f | ≤ f0]. (16)

Both transform pairs are illustrated in Figure 2.
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Example 2.21. Let’s try to derive the time-shift property from the frequency-
shift property. We start with an arbitrary function g(t). Next we will define
another function x(t) by setting X(f) to be g(f). Note that f here is just
a dummy variable; we can also write X(t) = g(t). Applying the duality

theorem to the transform pair x(t)
F−−⇀↽−−
F−1

X(f), we get another transform

pair X(t)
F−−⇀↽−−
F−1

x(−f). The LHS is g(t); therefore, the RHS must be G(f).

This implies G(f) = x(−f). Next, recall the frequency-shift property:

ej2πctx (t)
F−−⇀↽−−
F−1

X (f − c) .

The duality theorem then gives

X (t− c)
F−−⇀↽−−
F−1

ej2πc−fx (−f) .

Replacing X(t) by g(t) and x(−f) by G(f), we finally get the time-shift
property.

Definition 2.22. The convolution of two signals, x1(t) and x2(t), is a new
function of time, x(t). We write

x = x1 ∗ x2.

It is defined as the integral of the product of the two functions after one is
reversed and shifted:

x(t) = (x1 ∗ x2)(t) (17)

=

∫ +∞

−∞
x1(µ)x2(t− µ)dµ =

∫ +∞

−∞
x1(t− µ)x2(µ)dµ. (18)

• Note that t is a parameter as far as the integration is concerned.

• The integrand is formed from x1 and x2 by three operations:

(a) time reversal to obtain x2(−µ),

(b) time shifting to obtain x2(−(µ− t)) = x2(t− µ), and

(c) multiplication of x1(µ) and x2(t− µ) to form the integrand.

• In some references, (17) is expressed as x(t) = x1(t) ∗ x2(t).
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Example 2.23. We can get a triangle from convolution of two rectangular
waves. In particular,

1[|t| ≤ a] ∗ 1[|t| ≤ a] = (2a− |t|)× 1[|t| ≤ 2a].

2.24. Convolution theorem:

(a) Convolution-in-time rule:

x1 ∗ x2

F−−⇀↽−−
F−1

X1 ×X2. (19)

(b) Convolution-in-frequency rule:

x1 × x2

F−−⇀↽−−
F−1

X1 ∗X2. (20)

Example 2.25. We can use the convolution theorem to “prove” the frequency-
sift property in 2.17.

2.26. From the convolution theorem, we have

• g2
F−−⇀↽−−
F−1

G ∗G

• if g is band-limited to B, then g2 is band-limited to 2B
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2.27. Parseval’s theorem (Rayleigh’s energy theorem, Plancherel for-
mula) for Fourier transform:∫ +∞

−∞
|g(t)|2dt =

∫ +∞

−∞
|G(f)|2df. (21)

The LHS of (21) is called the (total) energy of g(t). On the RHS, |G(f)|2
is called the energy spectral density of g(t). By integrating the energy
spectral density over all frequency, we obtain the signal ’s total energy. The
energy contained in the frequency band B can be found from the integral∫
B |G(f)|2df .

More generally, Fourier transform preserves the inner product [2, Theo-
rem 2.12]:

〈g1, g2〉 =

∫ ∞
−∞

g1(t)g
∗
2(t)dt =

∫ ∞
−∞

G1(f)G∗2(f)df = 〈G1, G2〉.

2.28. (Heisenberg) Uncertainty Principle [2, 9]: Suppose g is a func-
tion which satisfies the normalizing condition ‖g‖2

2 =
∫
|g(t)|2dt = 1 which

automatically implies that ‖G‖2
2 =

∫
|G(f)|2df = 1. Then(∫

t2|g(t)|2dt
)(∫

f 2|G(f)|2df
)
≥ 1

16π2
, (22)

and equality holds if and only if g(t) = Ae−Bt
2

where B > 0 and |A|2 =√
2B/π.

• In fact, we have(∫
t2|g(t− t0)|2dt

)(∫
f 2|G(f − f0)|2df

)
≥ 1

16π2
,

for every t0, f0.

• The proof relies on Cauchy-Schwarz inequality.

• For any function h, define its dispersion ∆h as
∫
t2|h(t)|2dt∫
|h(t)|2dt . Then, we can

apply (22) to the function g(t) = h(t)/‖h‖2 and get

∆h ×∆H ≥
1

16π2
.
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2.29. A signal cannot be simultaneously time-limited and band-limited.

Proof. Suppose g(t) is simultaneously (1) time-limited to T0 and (2) band-
limited to B. Pick any positive number Ts and positive integer K such that
fs = 1

Ts
> 2B and K > T0

Ts
. The sampled signal gTs(t) is given by

gTs(t) =
∑
k

g[k]δ (t− kTs) =
K∑

k=−K

g[k]δ (t− kTs)

where g[k] = g (kTs). Now, because we sample the signal faster than the
Nyquist rate, we can reconstruct the signal g by producing gTs ∗ hr where
the LPF hr is given by

Hr(ω) = Ts1[ω < 2πfc]

with the restriction that B < fc <
1
Ts
−B. In frequency domain, we have

G(ω) =
K∑

k=−K

g[k]e−jkωTsHr(ω).

Consider ω inside the interval I = (2πB, 2πfc). Then,

0
ω>2πB

= G(ω)
ω<2πfc

= Ts

K∑
k=−K

g (kTs) e
−jkωTs z=ejωTs

= Ts

K∑
k=−K

g (kTs) z
−k

(23)
Because z 6= 0, we can divide (23) by z−K and then the last term becomes
a polynomial of the form

a2Kz
2K + a2K−1z

2K−1 + · · ·+ a1z + a0.

By fundamental theorem of algebra, this polynomial has only finitely many
roots– that is there are only finitely many values of z = ejωTs which satisfies
(23). Because there are uncountably many values of ω in the interval I and
hence uncountably many values of z = ejωTs which satisfy (23), we have a
contradiction.

17


